Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chromosome painting between human and lorisiform prosimians: Evidence for the HSA 7/16 synteny in the primate ancestral karyotype

Identifieur interne : 001100 ( Main/Exploration ); précédent : 001099; suivant : 001101

Chromosome painting between human and lorisiform prosimians: Evidence for the HSA 7/16 synteny in the primate ancestral karyotype

Auteurs : Wenhui Nie [République populaire de Chine] ; Patricia C. M. O'Brien [Royaume-Uni] ; Beiyuan Fu [Royaume-Uni] ; Jinhuan Wang [République populaire de Chine] ; Weiting Su [République populaire de Chine] ; Malcolm A. Ferguson Mith [Royaume-Uni] ; Terence J. Robinson [Afrique du Sud] ; Fengtang Yang [République populaire de Chine, Royaume-Uni]

Source :

RBID : ISTEX:7821160D34C50DC49CA49C1124BD0F373C0A27FA

English descriptors

Abstract

Multidirectional chromosome painting with probes derived from flow‐sorted chromosomes of humans (Homo sapiens, HSA, 2n = 46) and galagos (Galago moholi, GMO, 2n = 38) allowed us to map evolutionarily conserved chromosomal segments among humans, galagos, and slow lorises (Nycticebus coucang, NCO, 2n = 50). In total, the 22 human autosomal painting probes detected 40 homologous chromosomal segments in the slow loris genome. The genome of the slow loris contains 16 sytenic associations of human homologues. The ancient syntenic associations of human chromosomes such as HSA 3/21, 7/16, 12/22 (twice), and 14/15, reported in most mammalian species, were also present in the slow loris genome. Six associations (HSA 1a/19a, 2a/12a, 6a/14b, 7a/12c, 9/15b, and 10a/19b) were shared by the slow loris and galago. Five associations (HSA 1b/6b, 4a/5a, 11b/15a, 12b/19b, and 15b/16b) were unique to the slow loris. In contrast, 30 homologous chromosome segments were identified in the slow loris genome when using galago chromosome painting probes. The data showed that the karyotypic differences between these two species were mainly due to Robertsonian translocations. Reverse painting, using galago painting probes onto human chromosomes, confirmed most of the chromosome homologies between humans and galagos established previously, and documented the HSA 7/16 association in galagos, which was not reported previously. The presence of the HSA 7/16 association in the slow loris and galago suggests that the 7/16 association is an ancestral synteny for primates. Based on our results and the published homology maps between humans and other primate species, we propose an ancestral karyotype (2n = 60) for lorisiform primates. Am J Phys Anthropol, 2006. © 2005 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/ajpa.20299


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chromosome painting between human and lorisiform prosimians: Evidence for the HSA 7/16 synteny in the primate ancestral karyotype</title>
<author>
<name sortKey="Nie, Wenhui" sort="Nie, Wenhui" uniqKey="Nie W" first="Wenhui" last="Nie">Wenhui Nie</name>
</author>
<author>
<name sortKey="O Brien, Patricia C M" sort="O Brien, Patricia C M" uniqKey="O Brien P" first="Patricia C. M." last="O'Brien">Patricia C. M. O'Brien</name>
</author>
<author>
<name sortKey="Fu, Beiyuan" sort="Fu, Beiyuan" uniqKey="Fu B" first="Beiyuan" last="Fu">Beiyuan Fu</name>
</author>
<author>
<name sortKey="Wang, Jinhuan" sort="Wang, Jinhuan" uniqKey="Wang J" first="Jinhuan" last="Wang">Jinhuan Wang</name>
</author>
<author>
<name sortKey="Su, Weiting" sort="Su, Weiting" uniqKey="Su W" first="Weiting" last="Su">Weiting Su</name>
</author>
<author>
<name sortKey="Ferguson Mith, Malcolm A" sort="Ferguson Mith, Malcolm A" uniqKey="Ferguson Mith M" first="Malcolm A." last="Ferguson Mith">Malcolm A. Ferguson Mith</name>
</author>
<author>
<name sortKey="Robinson, Terence J" sort="Robinson, Terence J" uniqKey="Robinson T" first="Terence J." last="Robinson">Terence J. Robinson</name>
</author>
<author>
<name sortKey="Yang, Fengtang" sort="Yang, Fengtang" uniqKey="Yang F" first="Fengtang" last="Yang">Fengtang Yang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7821160D34C50DC49CA49C1124BD0F373C0A27FA</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1002/ajpa.20299</idno>
<idno type="url">https://api.istex.fr/document/7821160D34C50DC49CA49C1124BD0F373C0A27FA/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000781</idno>
<idno type="wicri:Area/Istex/Curation">000772</idno>
<idno type="wicri:Area/Istex/Checkpoint">000A73</idno>
<idno type="wicri:doubleKey">0002-9483:2006:Nie W:chromosome:painting:between</idno>
<idno type="wicri:Area/Main/Merge">001117</idno>
<idno type="wicri:Area/Main/Curation">001100</idno>
<idno type="wicri:Area/Main/Exploration">001100</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Chromosome painting between human and lorisiform prosimians: Evidence for the HSA 7/16 synteny in the primate ancestral karyotype</title>
<author>
<name sortKey="Nie, Wenhui" sort="Nie, Wenhui" uniqKey="Nie W" first="Wenhui" last="Nie">Wenhui Nie</name>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Cellular and Molecular Evolution, Chinese Academy of Sciences, Kunming, Yunnan 650223</wicri:regionArea>
<wicri:noRegion>Yunnan 650223</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Graduate School, Chinese Academy of Sciences, Beijing 100039</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="O Brien, Patricia C M" sort="O Brien, Patricia C M" uniqKey="O Brien P" first="Patricia C. M." last="O'Brien">Patricia C. M. O'Brien</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Veterinary Science, University of Cambridge, Cambridge CB3 0ES</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fu, Beiyuan" sort="Fu, Beiyuan" uniqKey="Fu B" first="Beiyuan" last="Fu">Beiyuan Fu</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Veterinary Science, University of Cambridge, Cambridge CB3 0ES</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jinhuan" sort="Wang, Jinhuan" uniqKey="Wang J" first="Jinhuan" last="Wang">Jinhuan Wang</name>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Cellular and Molecular Evolution, Chinese Academy of Sciences, Kunming, Yunnan 650223</wicri:regionArea>
<wicri:noRegion>Yunnan 650223</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Su, Weiting" sort="Su, Weiting" uniqKey="Su W" first="Weiting" last="Su">Weiting Su</name>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Cellular and Molecular Evolution, Chinese Academy of Sciences, Kunming, Yunnan 650223</wicri:regionArea>
<wicri:noRegion>Yunnan 650223</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ferguson Mith, Malcolm A" sort="Ferguson Mith, Malcolm A" uniqKey="Ferguson Mith M" first="Malcolm A." last="Ferguson Mith">Malcolm A. Ferguson Mith</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Veterinary Science, University of Cambridge, Cambridge CB3 0ES</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Robinson, Terence J" sort="Robinson, Terence J" uniqKey="Robinson T" first="Terence J." last="Robinson">Terence J. Robinson</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Evolutionary Genomics Group, Department of Zoology, University of Stellenbosch, Matieland 7602</wicri:regionArea>
<wicri:noRegion>Matieland 7602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Fengtang" sort="Yang, Fengtang" uniqKey="Yang F" first="Fengtang" last="Yang">Fengtang Yang</name>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Cellular and Molecular Evolution, Chinese Academy of Sciences, Kunming, Yunnan 650223</wicri:regionArea>
<wicri:noRegion>Yunnan 650223</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Veterinary Science, University of Cambridge, Cambridge CB3 0ES</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Current Address: Welcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA</wicri:regionArea>
<wicri:noRegion>CB10 1SA</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">American Journal of Physical Anthropology</title>
<title level="j" type="sub">The Official Publication of the American Association of Physical Anthropologists</title>
<title level="j" type="abbrev">Am. J. Phys. Anthropol.</title>
<idno type="ISSN">0002-9483</idno>
<idno type="eISSN">1096-8644</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2006-02">2006-02</date>
<biblScope unit="volume">129</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="250">250</biblScope>
<biblScope unit="page" to="259">259</biblScope>
</imprint>
<idno type="ISSN">0002-9483</idno>
</series>
<idno type="istex">7821160D34C50DC49CA49C1124BD0F373C0A27FA</idno>
<idno type="DOI">10.1002/ajpa.20299</idno>
<idno type="ArticleID">AJPA20299</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0002-9483</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>chromosome evolution</term>
<term>in situ hybridization</term>
<term>phylogeny</term>
<term>slow loris</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Multidirectional chromosome painting with probes derived from flow‐sorted chromosomes of humans (Homo sapiens, HSA, 2n = 46) and galagos (Galago moholi, GMO, 2n = 38) allowed us to map evolutionarily conserved chromosomal segments among humans, galagos, and slow lorises (Nycticebus coucang, NCO, 2n = 50). In total, the 22 human autosomal painting probes detected 40 homologous chromosomal segments in the slow loris genome. The genome of the slow loris contains 16 sytenic associations of human homologues. The ancient syntenic associations of human chromosomes such as HSA 3/21, 7/16, 12/22 (twice), and 14/15, reported in most mammalian species, were also present in the slow loris genome. Six associations (HSA 1a/19a, 2a/12a, 6a/14b, 7a/12c, 9/15b, and 10a/19b) were shared by the slow loris and galago. Five associations (HSA 1b/6b, 4a/5a, 11b/15a, 12b/19b, and 15b/16b) were unique to the slow loris. In contrast, 30 homologous chromosome segments were identified in the slow loris genome when using galago chromosome painting probes. The data showed that the karyotypic differences between these two species were mainly due to Robertsonian translocations. Reverse painting, using galago painting probes onto human chromosomes, confirmed most of the chromosome homologies between humans and galagos established previously, and documented the HSA 7/16 association in galagos, which was not reported previously. The presence of the HSA 7/16 association in the slow loris and galago suggests that the 7/16 association is an ancestral synteny for primates. Based on our results and the published homology maps between humans and other primate species, we propose an ancestral karyotype (2n = 60) for lorisiform primates. Am J Phys Anthropol, 2006. © 2005 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Afrique du Sud</li>
<li>Royaume-Uni</li>
<li>République populaire de Chine</li>
</country>
<region>
<li>Angleterre</li>
<li>Angleterre de l'Est</li>
</region>
<settlement>
<li>Cambridge</li>
<li>Pékin</li>
</settlement>
<orgName>
<li>Université de Cambridge</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Nie, Wenhui" sort="Nie, Wenhui" uniqKey="Nie W" first="Wenhui" last="Nie">Wenhui Nie</name>
</noRegion>
<name sortKey="Nie, Wenhui" sort="Nie, Wenhui" uniqKey="Nie W" first="Wenhui" last="Nie">Wenhui Nie</name>
<name sortKey="Su, Weiting" sort="Su, Weiting" uniqKey="Su W" first="Weiting" last="Su">Weiting Su</name>
<name sortKey="Wang, Jinhuan" sort="Wang, Jinhuan" uniqKey="Wang J" first="Jinhuan" last="Wang">Jinhuan Wang</name>
<name sortKey="Yang, Fengtang" sort="Yang, Fengtang" uniqKey="Yang F" first="Fengtang" last="Yang">Fengtang Yang</name>
</country>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="O Brien, Patricia C M" sort="O Brien, Patricia C M" uniqKey="O Brien P" first="Patricia C. M." last="O'Brien">Patricia C. M. O'Brien</name>
</region>
<name sortKey="Ferguson Mith, Malcolm A" sort="Ferguson Mith, Malcolm A" uniqKey="Ferguson Mith M" first="Malcolm A." last="Ferguson Mith">Malcolm A. Ferguson Mith</name>
<name sortKey="Fu, Beiyuan" sort="Fu, Beiyuan" uniqKey="Fu B" first="Beiyuan" last="Fu">Beiyuan Fu</name>
<name sortKey="Yang, Fengtang" sort="Yang, Fengtang" uniqKey="Yang F" first="Fengtang" last="Yang">Fengtang Yang</name>
<name sortKey="Yang, Fengtang" sort="Yang, Fengtang" uniqKey="Yang F" first="Fengtang" last="Yang">Fengtang Yang</name>
</country>
<country name="Afrique du Sud">
<noRegion>
<name sortKey="Robinson, Terence J" sort="Robinson, Terence J" uniqKey="Robinson T" first="Terence J." last="Robinson">Terence J. Robinson</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001100 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001100 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:7821160D34C50DC49CA49C1124BD0F373C0A27FA
   |texte=   Chromosome painting between human and lorisiform prosimians: Evidence for the HSA 7/16 synteny in the primate ancestral karyotype
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024